

Tensar, a division of CMC 2500 Northwinds Pkwy., Ste. 500 Alpharetta, Georgia 30009 Phone: 800-TENSAR-1 www.tensarcorp.com

Product Specifications for Tensar Biaxial Geogrids

- Biaxial Geogrid BX1100
- Biaxial Geogrid BX1120
- Biaxial Geogrid BX1200
- Biaxial Geogrid BX1300
- Biaxial Geogrid BX1500
- Biaxial Geogrid BXSQ100
- Biaxial Geogrid BXSQ1515
- Biaxial Geogrid BXSQ2020
- Biaxial Geogrid BXSQ2525
- Biaxial Geogrid BXSQ3030

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type:	Integrally Formed Biaxial Geogrid
Polymer:	Polypropylene
Load Transfer Mechanism:	Positive Mechanical Interlock
Primary Applications:	Spectra System (Base Stabilization, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	33 (1.3)
 Rib Thickness² 	mm (in)	0.76 (0.03)	0.76 (0.03)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	4.1 (280)	6.6 (450)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	8.5 (580)	13.4 (920)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	12.4 (850)	19.0 (1,300)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Overall Flexural Rigidity⁵ 	mg-cm	250,000	
 Aperture Stability⁶ 	m-N/deg	0.32	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 100 meters (328 feet) in length.

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement measured in accordance with ASTM D7864/D7864M-15.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type:	Integrally Formed Biaxial Geogrid
Polymer:	Polypropylene
Load Transfer Mechanism:	Positive Mechanical Interlock
Primary Applications:	SierraScape System, ADD ³ System (Exposed Wall Face Wrap)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	33 (1.3)
 Rib Thickness² 	mm (in)	0.76 (0.03)	0.76 (0.03)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	4.1 (280)	6.6 (450)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	8.5 (580)	13.4 (920)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	12.4 (850)	19.0 (1,300)
 Carbon Black Content 	%	2.0	
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Overall Flexural Rigidity⁵ 	mg-cm	250,000	
 Aperture Stability⁶ 	m-N/deg	0.32	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
Resistance to Long Term Degradation ⁸	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 100 meters (328 feet) in length or 3 meters (9.8 feet) x 50 meters (164 feet).

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement measured in accordance with ASTM D7864/D7864M-15.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type:	Integrally Formed Biaxial Geogrid
Polymer:	Polypropylene
Load Transfer Mechanism:	Positive Mechanical Interlock
Primary Applications:	Spectra System (Base Stabilization, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	33 (1.3)
 Rib Thickness² 	mm (in)	1.27 (0.05)	1.27 (0.05)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	6.0 (410)	9.0 (620)
 Tensile Strength @ 5% Strain³ 	kN/m (lb/ft)	11.8 (810)	19.6 (1,340)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	19.2 (1,310)	28.8 (1,970)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Overall Flexural Rigidity⁵ 	mg-cm	750,000	
 Aperture Stability⁶ 	m-N/deg	0.65	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
Resistance to Long Term Degradation ⁸	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 75.0 meters (246 feet) in length.

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement measured in accordance with ASTM D7864/D7864M-15.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type:	Integrally Formed Biaxial Geogrid
Polymer:	Polypropylene
Load Transfer Mechanism:	Positive Mechanical Interlock
Primary Applications:	Spectra System (Base Stabilization, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	46 (1.8)	64 (2.5)
 Rib Thickness² 	mm (in)	1.27 (0.05)	1.27 (0.05)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	5.5 (380)	9.5 (650)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	10.5 (720)	17.5 (1,200)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	16.0 (1,100)	28.0 (1,920)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Overall Flexural Rigidity⁵ 	mg-cm	450,000	
 Aperture Stability⁶ 	m-N/deg	0.58	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	91 / 83 / 72	
Resistance to Long Term Degradation ⁸	%	100	
Resistance to UV Degradation ⁹	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 50.0 meters (164 feet) in length.

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement measured in accordance with ASTM D7864/D7864M-15.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type:	Integrally Formed Biaxial Geogrid
Polymer:	Polypropylene
Load Transfer Mechanism:	Positive Mechanical Interlock
Primary Applications:	Spectra System (Base Stabilization, Subgrade Improvement)

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	25 (1.0)	30.5 (1.2)
Rib Thickness ²	mm (in)	1.78 (0.07)	1.78 (0.07)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	8.5 (580)	10.0 (690)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	17.5 (1,200)	20.0 (1,370)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	27.0 (1,850)	30.0 (2,050)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Overall Flexural Rigidity⁵ 	mg-cm	2,000,000	
Aperture Stability ⁶	m-N/deg	0.75	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
 Resistance to Long Term Degradation⁸ 	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 50.0 meters (164 feet) in length.

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement measured in accordance with ASTM D7864/D7864M-15.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well-graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

Product Type:	
Polymer:	

Integrally Formed Biaxial Geogrid Polypropylene

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	38 (1.5)	38 (1.5)
Rib Thickness ²	mm (in)	0.7 (0.03)	0.5 (0.02)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	4.5 (310)	4.5 (310)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	8.5 (580)	8.5 (580)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	12.5 (855)	12.5 (855)
Structural Integrity			
 Junction Efficiency⁴ 	%	ç	3
 Overall Flexural Rigidity⁵ 	mg-cm	160,000	
 Aperture Stability⁶ 	m-N/deg	0.32	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
Resistance to Long Term Degradation ⁸	%	100	
 Resistance to UV Degradation⁹ 	%	1	00

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 75.0 meters (246 feet) in length.

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement measured by applying a 20 kg-cm (2 m-N) moment to the central junction of a 9 inch x 9 inch specimen restrained at its perimeter in accordance with GRI GG9.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), well-graded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

The geogrid specified herein has not been tested, calibrated, or validated in relation to any design methodology for either unpaved roads or flexible pavements.

Product Type:

Integrally Formed Biaxial Geogrid

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Polymer:

Polypropylene

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	38 (1.5)	38 (1.5)
 Rib Thickness² 	mm (in)	0.9 (0.035)	0.6 (0.025)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	5.0 (340)	5.0 (340)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	11 (750)	11 (750)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	15 (1030)	15 (1030)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Overall Flexural Rigidity⁵ 	mg-cm	325,000	
 Aperture Stability⁶ 	m-N/deg	0.38	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
Resistance to Long Term Degradation ⁸	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 100 meters (328 feet) in length.

Notes

1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.

2. Nominal dimensions.

- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement in accordance with ASTM D7864/D7864M-15.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), wellgraded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

The geogrid specified herein has not been tested, calibrated, or validated in relation to any design methodology for either unpaved roads or flexible pavements.

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Polymer: Integrally Formed Biaxial Geogrid Polypropylene

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	38 (1.5)	38 (1.5)
 Rib Thickness² 	mm (in)	1.1 (0.04)	0.8 (0.03)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	6.5 (450)	6.5 (450)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	13 (890)	13 (890)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	20 (1370)	20 (1370)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
 Overall Flexural Rigidity⁵ 	mg-cm	700,000	
 Aperture Stability⁶ 	m-N/deg	0.45	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90	
Resistance to Long Term Degradation ⁸	%	100	
 Resistance to UV Degradation⁹ 	%	100	

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 100 meters (328 feet) in length.

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement in accordance with ASTM D7864/D7864M-15.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), wellgraded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

The geogrid specified herein has not been tested, calibrated, or validated in relation to any design methodology for either unpaved roads or flexible pavements.

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Polymer: Integrally Formed Biaxial Geogrid Polypropylene

Product Properties

Index Properties	Units	MD Values ¹	XMD Values ¹
 Aperture Dimensions² 	mm (in)	38 (1.5)	38 (1.5)
 Rib Thickness² 	mm (in)	1.1 (0.04)	0.8 (0.03)
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	8.9 (610)	8.9 (610)
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	16.9 (1160)	16.9 (1160)
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	25 (1710)	25 (1710)
Structural Integrity			
 Junction Efficiency⁴ 	%	93	
Flexural Stiffness ⁵	mg-cm	1,350,000	
 Aperture Stability⁶ 	m-N/deg	0.6	
Durability			
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 9	93 / 90
 Resistance to Long Term Degradation⁸ 	%	10	00
 Resistance to UV Degradation⁹ 	%	10	00

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 50.0 meters (164 feet) in length.

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- Resistance to bending force determined in accordance with ASTM D7748-12, using specimens of width two ribs wide, with transverse ribs cut flush with exterior edges of longitudinal ribs, and of length sufficiently long to enable measurement of the overhang dimension.
 Resistance to in-plane rotational movement in accordance with ASTM D7864/D7864M-15.
- Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), wellgraded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with
- ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

The geogrid specified herein has not been tested, calibrated, or validated in relation to any design methodology for either unpaved roads or flexible pavements.

Tensar International Corporation reserves the right to change its product specifications at any time. It is the responsibility of the specifier and purchaser to ensure that product specifications used for design and procurement purposes are current and consistent with the products used in each instance.

Product Type: Polymer:

Integrally Formed Biaxial Geogrid Polypropylene

Product Properties

Index Properties	Units	MD Values ¹	1 XMD Values ¹	
 Aperture Dimensions² 	mm (in)	38 (1.5)	38 (1.5)	
 Rib Thickness² 	mm (in)	2.2 (0.09)	1.5 (0.06)	
Tensile Strength @ 2% Strain ³	kN/m (lb/ft)	10.5 (720)	10.5 (720)	
Tensile Strength @ 5% Strain ³	kN/m (lb/ft)	21 (1440)	21 (1440)	
 Ultimate Tensile Strength³ 	kN/m (lb/ft)	30 (2055)	30 (2055)	
Structural Integrity				
 Junction Efficiency⁴ 	%	93		
 Overall Flexural Rigidity⁵ 	mg-cm	2,000,000		
 Aperture Stability⁶ 	m-N/deg	0.75		
Durability				
 Resistance to Installation Damage⁷ 	%SC / %SW / %GP	95 / 93 / 90		
 Resistance to Long Term Degradation⁸ 	%	100		
 Resistance to UV Degradation⁹ 	%	100		

Dimensions and Delivery

The biaxial geogrid shall be delivered to the job site in roll form with each roll individually identified and nominally measuring 3.8 meters (12.5 feet) in width and 50.0 meters (164 feet) in length.

Notes

- 1. Unless indicated otherwise, values shown are minimum average roll values determined in accordance with ASTM D4759-02. Brief descriptions of test procedures are given in the following notes.
- 2. Nominal dimensions.
- 3. Determined in accordance with ASTM D6637-10 Method A.
- 4. Load transfer capability determined in accordance with ASTM D7737-11.
- 5. Resistance to bending force determined in accordance with ASTM D7748/D7748M-14.
- 6. Resistance to in-plane rotational movement measured in accordance with ASTM D7864/D7864M-15.
- 7. Resistance to loss of load capacity or structural integrity when subjected to mechanical installation stress in clayey sand (SC), wellgraded sand (SW), and crushed stone classified as poorly graded gravel (GP). The geogrid shall be sampled in accordance with ASTM D5818 and load capacity shall be determined in accordance with ASTM D6637.
- 8. Resistance to loss of load capacity or structural integrity when subjected to chemically aggressive environments in accordance with EPA 9090 immersion testing.
- 9. Resistance to loss of load capacity or structural integrity when subjected to 500 hours of ultraviolet light and aggressive weathering in accordance with ASTM D4355-05.

Tensar warrants that at the time of delivery the geogrid furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby excluded. If the geogrid does not meet the specifications on this page and Tensar is notified prior to installation, Tensar will replace the geogrid at no cost to the customer.

The geogrid specified herein has not been tested, calibrated, or validated in relation to any design methodology for either unpaved roads or flexible pavements.

LOCATIONS & CONTACT INFO

ASP ENTERPRISES

aspent.com salesasp@aspent.com

St. Louis, MO 636.343.4357

Kansas City, MO 816.554.1191 **Omaha, NE** 402.861.8579 **Wichita, KS**

Enterprises

Wichita, KS 316.393.1554

BOWMAN CONSTRUCTION SUPPLY

bowmanconstructionsupply.com quicksupplyco.com salesbcs@bowmanconstructionsupply.com salesquick@quicksupplyco.com

Denver, CO Loveland, CO 303.696.8960 970.535.0863

Bowman Construction

Supply Inc.

Colorado Springs, CO 719.257.7840 QUICK SUPPLY CO. quicksupplyco.com

Des Moines. IA

Quick Supply Co.

515.289.1271

CASCADE GEOSYNTHETICS cascadegeos.com

salescascade@cascadegeos.com

Portland, OR 971.339.1020

Salt Lake City, UT 435.276.0820

SOLUTIONS WE SUPPLY

GEOSYNTHETICS

Filter Fabrics

Stabilization Fabrics Geogrids

- Road Grids
- Wall Grids
- Slope Stabilization
- Specialty Fabrics

Composite Geomembranes

• GCLs, PVC, HDPE, LLDPE, EPDM, Granular Bentonite

SEDIMENT CONTROL

Inlet Protection

Grated Inlet, Curb Inlet, Area Inlet
 Protection

Ditch Checks

- Triangle Silt Dike
- GeoRidge

Perimeter Protection

- High and Low-Porosity Silt Fence, Straw Wattles, Silt Socks
- Safety Fence

Flocculants & Water Treatment

• Polymer-Based & Natural Flocculants Sediment Basin Skimmers Dewatering Bags

Trackout Control

- FODS
- Rumble Grates

Turbidity Curtains

EROSION CONTROL

Basic Hydraulically Applied Mulches

- Wood
- Paper
- Blends
- Straw

High-Performance Hydraulically

- **Applied Products**
 - BFM
 - FGM
 - Additives & Tackifiers

Temporary Erosion Control Blankets

- Coir & Jute Mat/Nettings
- Short-Term ECBs
- Extended-Term ECBs

Permanent Erosion Control Blankets

- Turf Reinforcement Mats
- HP-TRMs
- Anchor Reinforced Vegetation System

Structural BMPs

- Transition Mats
- Geoweb Cellular Confinement
- Composite Vegetated Armor System
- Flex MSE Vegetated Wall System
- Articulated Concrete Block
- Gabions
- Grout-Filled Geotextile Mats

We are full line distributors of construction materials for all project types. Contact us for assistance with a project. From specification and development to installation and completion, we're here to help with all of your site solution needs.

GEOSYNTHETICS | EROSION CONTROL | STORMWATER MANAGEMENT SEDIMENT CONTROL | REVEGETATION & SOIL AMENDMENTS

Vegetation Establishment

- Native Seed & Turf Seed
- Fertilizers
- Organic Soil Additives
 Stratavault Soil Cells

STORMWATER MANAGEMENT

Water Quality

- Inlet Filter Boxes
- Pre-Treatment Chamber
- Nutrient Separating Baffle Boxes
- High-Flow Biofiltration MediaHydrodynamic Separators
- HydrodynaStratavault

Water Quantity

- Modular Underground Storage
 Systems
- Chamber Detention Systems

Drainage

- HDPE Swale Liner
- Pipe & Fittings
- Drainage Composites
- Strip Drain

Inlet Structures

- PVC
- Drain Basis, In-Line Drains
- Landscape

Permeable Pavers

- Permeable Articulating Concrete Block
- Grass Pavers
- Gravel Pavers
- Concrete Pavers

SPECIALTY

Natural & Synthetic Coir Fiber Logs Vegetated Reinforced Soil Slopes Soil Anchors Root Barrier System AquaBlok Muscle Wall